A Simulation Study of Temperature Field of Ceramic Asphalt Pavement
-
摘要: 将陶瓷粉末等体积替代 SMA-13的细集料(替代率分别为10%,20%,30%,40%,50%)制备陶瓷粉末沥青混凝土,研究陶瓷沥青混凝土的热物性参数;建立基于热传导理论的沥青路面温度场模型,模拟不同陶瓷粉末掺量的沥青混凝土在运营阶段的路面温度变化,以及摊铺施工阶段路面温度散失情况。建立车辙分析模型,模拟陶瓷沥青混凝土在温度和荷载耦合作用下的永久变形。结果表明,陶瓷粉末沥青混凝土的导热系数降低;与 SMA-13沥青混合料相比,掺量为50%的陶瓷沥青混合料①在运营阶段路表4 cm 深度处的最高温度降低了4.42℃;②在施工阶段根据温度热散失得到的有效压实时间增加24 min;③其永久变形为1.12 cm,比无隔热层路面减少56%。Abstract: Ceramic asphalt concrete is produced by replacing fine aggregate of SMA-13 with different amount of ce-ramic powder.The percentages of replacement by volumes are 10%,20%,30%,40% or 50%.The thermophysical pa-rameters of ceramic asphalt concrete are studied.A model of pavement temperature field is developed based on the heat conduct theory to simulate the temperature variation during the operations and the heat loss during the constructions for the ceramic asphalt concrete with different amounts of ceramic replacement.A rutting model of pavement is also devel-oped in this study to simulate the permanent deformation under the coupling effects of temperatures and loadings.The re-sults show that the heat conductivity coefficient for the concrete with ceramic decreases.When the ceramic replacement reaches 50%,the highest temperature at 4 cm below the ceramic asphalt concrete surface during the operations decreases by 4.42 ℃;the effective compacting time increases 24 min during the constructions;and the permanent deformation is 1. 12 cm,which decreases by 56% comparing to SMA-13 asphalt concrete.
点击查看大图
计量
- 文章访问数: 188
- HTML全文浏览量: 35
- PDF下载量: 0
- 被引次数: 0